1 FTC

- 1. True False $\int_0^x e^{t^2} dt$ is an antiderivative of e^{x^2} .
- 2. If $\int_0^x f(t)dt = \frac{1}{2}\cos(2x) a$, find f, a.
- 3. Find the derivative of $\int_{\pi}^{x} \sec(t) dt$.
- 4. Find the derivative of $\int_{\pi}^{x} \sec(t) dt$.
- 5. Find the derivative of $\int_{r}^{3} e^{-t^2} dt$.
- 6. Find the derivative of $\int_0^{x^3} \ln(t) dt$.
- 7. Find the derivative of $\int_{2x}^{x^2} \sqrt{t^2 + t} dt$.

2 U-Substitution/Integration by Parts

- 8. True False When integrating by parts, choosing different functions for u and dv (assuming both work out), will give different answers.
- 9. True False It is always good to u sub first in order to simplify the integral.
- 10. Integrate $\int x(3x^2-5)^5 dx$.
- 11. Integrate $\int 2x^3 e^{x^2} dx$.
- 12. Find $\int_0^1 \sqrt{1-\sqrt{x}} dx$.
- 13. Find $\int x^5 e^{x^3} dx$.
- 14. Integrate $\int 2x^3 \cos(x^2) dx$.
- 15. Integrate $\int 2x \arctan(x) dx$.

- 16. Integrate $\int \frac{\ln \sqrt{x}}{\sqrt{x}} dx$.
- 17. Integrate $\int_0^{\pi/2} \sin(x) \cos(x) \sin(\sin(x)) dx$.
- 18. Integrate $\int_0^1 2x^3 \sin(x^2) dx$.
- 19. Integrate $\int_0^1 x^{-1/2} \arctan(\sqrt{x}) dx$.
- 20. Integrate $\int_1^{e^{\pi}} \sin(\ln(x)) dx$.

3 Symmetry

- 21. Is $f(x) = \frac{x \sin(x)}{x^2 + 4}$ even, odd, or neither?
- 22. Is $f(x) = x^2 \tan(x)$ even, odd, or neither?
- 23. Is $f(x) = xe^x$ even, odd, or neither?
- 24. Is $f(x) = e^{x^2} \sin(x)$ even, odd, or neither?

4 Numerical Integration

- 25. True False Numerical approximations are just approximations, and never the exact answer.
- 26. True False The second derivative can tell us if the midpoint rule gives an over/under estimate.
- 27. True False Simpson's method will approximate cubics exactly.
- 28. True False When calculating K_1 of f(x) on [a, b], we have that K_1 is the maximum of |f'(a)| and |f'(b)|.
- 29. How many intervals do we need to use to approximate $\int_{1}^{4} \ln x dx$ within $0.001 = 10^{-3}$ using Simpson's rule? Approximate it using Simpson's rule and n = 4.
- 30. How many intervals do we need to use to approximate $\int_{-3}^{-1} 1/x^2 dx$ within $0.001 = 10^{-3}$ using the midpoint rule? Approximate it using the midpoint rule and n = 4.
- 31. How many intervals do we need to use to approximate $\int_0^4 e^x dx$ within $0.001 = 10^{-3}$ using the trapezoid rule? Approximate it using the trapezoid rule and n = 4.

- 32. Approximate the integral $\int_1^3 \frac{dx}{x}$ with n=2 intervals using the different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson's).
- 33. What is the smallest value of n needed to ensure that our numerical approximation method for $\int_1^3 dx/x$ is within $0.0001 = 10^{-4}$ using the different methods?

5 Improper Integrals

- 34. True False We can compare an integral to $\int_1^\infty 1/\sqrt{x} dx$ in order to show it converges.
- 35. True False We can compare an integral to $\int_1^\infty 1/x^2 dx$ to show it diverges.
- 36. True False Since x < x + 1, we have that $\infty = \int_1^\infty \frac{1}{x} dx \le \int_1^\infty \frac{1}{x+1} dx$ so the latter integral diverges.
- 37. Calculate $\int_{-\infty}^{\infty} \frac{1}{1 + (x-1)^3} dx.$
- 38. Calculate $\int_{1}^{\infty} xe^{-2x} dx$.
- 39. Calculate $\int_{1}^{\infty} \frac{2x}{1+x^2} dx$.
- 40. Does $\int_3^\infty \frac{1}{\sqrt{x} \ln(x)}$ converge?
- 41. Does $\int_{1}^{\infty} \frac{2x + 2xe^{-x}}{1 + x^2} dx$ converge?

6 Partial Fractions

- 42. Integrate $\int \frac{5x+17}{x^2+2x-15} dx$.
- 43. Integrate $\int \frac{2x^3-12x^2+28x-23}{(x-2)^2(x-1)^2} dx$.
- 44. Set up the partial fraction decomposition of $\frac{3x^2+1}{(x-1)(x^2+4)^2(x^2+2x+2)^2}$ (you don't have to solve for the coefficients).